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INTRODUCTION

The work described in this report is a continuation of the effort

initiated two years ago for the purpose of determining whether a

special class of neuron-like adaptive learning controllers developed

by Barto i1] which operate in the extremizing mode suggested by Klopf

[2] could find some engineering application.

The motivation for this work came from our belief that if physi-

cal systems operating in this mode could be built, they may possess

significant performance advantages over other conventional systems.

Ultimately, our goal and hope was to demonstrate conclusively the

practical usefulness of these adaptive learning networks by develop-

ing some specific engineering application. Since our expertise and

interest are in synthetic aperture radars (SAR), the application

naturally would be in that area.

The application did not have to be unique, that is, it did not

have to be something which only these adaptive networks could per-

form. It would be sufficient at this stage to show simply that a

useful task could be performed. Whether these devices could do bet-

ter than other conventional systems/techniques, what would have to

be done to improve them, and how one would design them so that

superior performance would be obtained did not concern us at this

time. "

In the first year of this study it was decided that the most

promising learning network Barto developed that demonstrates problem

solving/control capability is the Adaptive Learning Controller (ALC)

learning network [3], which is described in some detail in the next

section. Briefly stated, in this system two elements are used to

implement a learning strategy as follows. One element, termed the

Associative Search Element (ASE), constructs associations between

"."",:'.%" ": "'"'....''.........".'..-......."............... -'............... ....... . ...
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the input and output by searching under the influence of reinforce-

ment feedback. A second element, the Adaptive Critic Element (ACE),
constructs a more informative evaluation function than reinforcement 2.

feedback can provide, thus improving the performance of the ASE when
operating alone. Both of these neuron-like adaptive elements, which

constitute the controller of the learning network, were suggested by

the work of Klopf.

The most attractive features of this ALC are:

a. Knowledge of system dynamics, i.e., a mathematical model of
the system, is not necessary in order to develop a control
law. The controller learns to develop it by association of
input and output;

b. The system to be controlled can be time varying and/or
non-linear;

c. A wide class of measures of performance can be optimized;

d. Only crude measures of the system state are required for
feedback;

e. A non-uniform sampling rate can be used, and

f. The algorithms are naturally adaptive. They can be used to
directly control the system or to optimize the performance
of an existing control system.

The ALC algorithm was implemented at ERIM and tested on the pole-

on-cart problem also used by Barto. In this example, the ALC is re-
quired to learn to balance a pole which is pivoted on top of a cart,

which is free to move along a straight line path by applying a con-
stant force, F, through the system's center of gravity. Our re-

sults substantiated that the ALC controller after a few trials can
indeed learn to keep the pole balanced for as long as desirable.

2

- °
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A study of the ALC algorithm revealed that it has potential

application to a class of control problems that can be studied from

the perspective of minimizing some performance function. Several

possible applications in SAR were identified for investigation. One

of these is the problem of cancellation of motion-induced quadratic

phase errors, which is discussed in detail in Section 3.

Phase errors in SAR phase histories result in blurred or de-

focused imagery, with degraded resolution and/or signal-to-noise

ratio. The primary cause of these phase errors is inaccuracy in

measuring the motion of the antenna phase center over the processing

interval.

A Taylor series expansion of the phase error about the center of

the processing aperture shows that the second-order term of the

series tends to dominate and most Phase error correction algorithms

are concerned with the estimation and correction of the quadratic

term. Image refocusing through quadratic phase error correction is

commonly referred to as autofocus processing.

To apply autofocus, however, aircraft velocity at imaging initia-

tion must be accurately known. Errors in initial aircraft velocity

values will cause proportionately large quadratic phase errors, which

may render autofocus impossible.

At the present time, a two-beacon plus altimeter scheme is used

at ERIM to provide these initial values. Though the system has been

working satisfactorily, this is a crucial link in good SAR imaging

and any improvements in the beacon update procedure would be con-

sidered a significant contribution to SAR imaging.

Section 2 provides a brief description of the operation and

implementation of the ALC at ERIM. In Section 3, the SAR Autofocus

and Motion Compensation Problem are outlined.

In Section 4, the application of the ALC to SAR imaging is con-

sidered. It is shown that the ALC adaptive controller can indeed be

3
J41 
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used to provide the correct initial aircraft velocity, hence reduce

motion-induced quadratic phase errors. This technique, which will

be referred to here as ALC motion correction, is automatic and can

be done in real time. These are distinct and desirable characteris-

tics which make this technique very attractive and worthy of further

exploration and development.

Section 5 describes the study performed and the results obtained

at ERIM related to the process of ALC design, in general, and design

optimization, in particular.

4
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2
DESCRIPTION OF OPERATION AND IMPLEMENTATION

OF THE ALC AT ERIM

Figure 1 shows a system with transfer function G controlled by

the ALC learning net. The state vector s of the system is sampled

at intervals T sec. and is fed into a decoder which is used to dis-

cretize the state space of s into a finite number of states, thus

converting s into a binary vector X, whose components are all zero

except the one corresponding to the state of the system at the sam- i

pling instant tk = kT. The dimension of X is equal to the number

chosen for the discrete states of the space of s.

The vector X is fed into the ALC. At the Adaptive Critic Ele-

ment, its adaptive weighting vector v, the input vector X and the

external reinforcement function r(t), are used to generate the inter-

nal reinforcement function r(t) that is input to the ASE, in . -

accordance with the rule:

r(k) = r(k) + yp(k) - p(k - 1)

where

p(k) =2Jvixi
y is a non-negative constant less than or equal to one, and the

weighting vector v updates in accordance with

vi(k + 1) vi(k) + s(k) i(k)

where X.(k) is the value of a trace of the input variable xi at

tk9 evaluated from:

xi(k+ 1) = *xi(k) + (1 - s)xi(k)

and B and a are positive constants.

5 3, .- "
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4.3 PROCESSING APPROACH

Figure 9 illustrates the SAR image processing chain normally used

at ERIM and the modified processing chain used for the ALC appli-

cation. Radar phase history and motion data are stored on High Den-

sity Tape (HDT) in the aircraft. On the ground, a portion of the

motion data and radar phase history data are written on computer

compatible tape which is used by the image processor to produce a

SAR image. Conventional autofocus techniques would normally be

applied by the image processor.

In the case of the ALC processing, the original radar phase
history CCT was processed offline on a VAX. The motion data are

processed by the ALC and the modified motion data, along with the

original radar phase history data, are written on a new CCT. The

new CCT is now processed by the image processor without using auto-

focus. Ideally, the ALC may reduce the quadratic motion error to

the point where autofocus is not required, but at a minimum will re-
duce the autofocus pull-in range requirements to a tolerable level.

4.4 ALC VELOCITY BIAS CORRECTION BLOCK DIAGRAM

Figure 10 indicates in block diagram form the processing con-
ducted with the ALC to solve the task defined in Figure 8. The

measurement data are (Y - Yo) where Y is the first measured
0' 0

value of Y. To these data a correction is applied in the form of

Y" The correction is obtained by integrating the estimate of the

velocity bias in (Y - Y0 ), c" The corrected Y motion measure-

ment, (Y - Yo - Yc), feeds two threshold tests. One threshold
0 c

counts the number of times (Y - Yo - Yc ) crosses the upper bound
and the other threshold test counts the number of times (Y - Yo -

Y ) crosses the lower bound. The variable X is the difference be-
c

tween the number of positive and the number of negative crossings.

The correction produced by the ALC is applied through a gain to the

22
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As was previously stated, the main source of quadratic (i.e., C

low frequency) phase error in the SAR signal is due to the motion

sensing inertial navigation system (INS) velocity bias. Therefore,

the ALC application was concentrated in sensing and correcting the

velocity bias. Further, to simplify the problem in the initial re- P

search effort, only motion errors due to cross-track velocity bias

were considered. This reduced the problem to one dimension, but

since the three-dimensional problem can be studied as three one-

dimensional problems, the simplification is justified. -

Figure 7 illustrates the application of the ALC to the problem

of cancelling the lateral (toward right or left wing) or cross track

INS velocity bias error. The task assigned to the ALC is to keep

the position measurements along any aircraft axis within the expected

bounds over the aperture time of the radar. When beacon data are

available, zero cross-track velocity estimates will be determined .-

from these data. If beacon data are not available, the assumption

is made that during imaging, the aircraft flies on the average a

straight line path through space and any deviations from this path

are at frequencies high compared to the inverse of the aperture time.

The aircraft motion data, recorded on computer compatible tape, when

plotted indicate that the aircraft was moving off the desired flight

line and had a nonzero average cross-track velocity. This apparent

average cross-track velocity is not a true velocity but a bias, and

if not cancelled will cause a quadratic phase error.

Figure 8 illustrates the task that the ALC must learn to perform.

The actual Y position of the aircraft as a function of time is known

to be bounded by the limits *Yb" When the recorded lateral air-

craft motion is plotted as a function of time, it quickly exceeds

these bounds. Thus, the ALC must apply a position correction to the

measured motion data to keep it within the defined bounds. These

corrected motion data are in turn used to correct the radar phase

data instead of the original motion data.

19 ""-
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4
A.C APPLICATION TO SAR IMAGING

4.1 APPLICATION OF ALC TO AUTOFOCUS

The method of applying the ALC to the autofocus problem, which
addresses the low frequency phase error correction problem in the

same way as present digital autofocus techniques, is illustrated in

Figure 6. Combining radar data and motion compensation phase cor-

rections, a radar image can be produced and measurements of 3 dB

width, 15 dB width and sidelobe energy can be made on a point target

in the scene. These IPR measurements go to the ALC decoder and the

ALC decides on the direction of the proper correction. Based on the

ALC decision, an autofocus correction is generated so a new image

can be produced. This process is repeated until a satisfactory image

is obtained.

This approach to applying the ALC to the autofocus problem was p
not pursued because the computer time associated with producing an

image is long and it was believed that the computer costs associated

with testing out this approach would be prohibitively high. A

second approach which did not require use of the image processing _

facility was selected in place of this approach.

4.2 MOTION CORRECTION VIA CORRECTION OF VELOCITY BIAS

In this section, we describe the work performed at ERIM in imple-

menting an ALC velocity bias correction system. It was shown that

the ALC can be used to reduce motion-induced quadratic phase errors.

Cancellation of motion-induced quadratic phase errors may render
autofocus correction unnecessary, or at a minimum so reduce the

errors as to ensure the success of existing autofocus technology.

17
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line would look something like Figure 5. The peak of the intensity

would be where the physical target is located and then it would roll

off to some small value which is eventually lost in the surrounding

clutter intensity. Figure 5 is called the azimuth impulse response

(IPR) function and is specified by such things as the 3 dB width, 15

dB width and the amount of energy in the sidelobes compared to the

amount of energy in the mainlobe. An analogous situation exists in

the orthogonal (range or line of sight) direction but in this case

high resolution is obtained on a single pulse using a narrow trans-

mitted pulse or pulse compression technique.

Any errors in measuring the motion of the aircraft off the nomi-

nal flight path will cause the IPR function illustrated in Figure 5

to degrade. The type of degradation can be related to the frequency

of the motion error (i.e., how rapidly the motion error changes with

time). Slowly changing errors, such as errors quadratic with time,

primarily cause the 3 dB width and 15 dB width to spread. Higher

frequency errors primarily cause an increase in the sidelobe energy

at the expense of the mainlobe energy. When SAR image processing

was done optically, the broadening of the 3 dB width could be cor-

rected by moving a lens in the optical processing chain. When digi-

tal image processors were developed, a technique called autofocus

was developed to correct out the low frequency phase errors.

1.
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corrects the measured phase history so the image focuses properly.

Current autofocus techniques, however, do not work very well for

certain kinds of imaged scenes. A detailed description of current

autofocus methods is given in Appendix A.

SAR MOTION COMPENSATION PROBLEM

The SAR motion compensation problem is illustrated in Figure 4,

which shows an aircraft trying to fly a straight line course while

illuminating some area of interest with a synthetic aperture radar

(SAR). The radar is a pulsed radar and every point in space, where

the radar transmits and receives a pulse, is a point in a

synthetically-long phased array. If these points form a straight

line in space and the pulses are added coherently, a synthetic array

is formed in space with a beamwidth much narrower than the radar

physical beamwidth, which permits accurate azimuth resolution of

closely spaced targets in the scene of interest. In reality, the

aircraft does not fly in a straight line but moves about the nominal

flight path as it is tossed about by atmospheric gusts. This means

that adding the pulses coherently will form a distorted linear array

and degrade resolution. Aircraft motion can, however, be corrected

by shifting the phase of each pulse proportionally to how much the

aircraft is off the nominal flight path, so it will have the same

phase as if received on the nominal flight path so the pulses will

coherently add and form the proper line array. To compensate each

radar pulse for aircraft motion, the aircraft must contain motion

sensing and computer equipment that can accurately compute the actual

aircraft position relative to the desired flight path. This motion

sensing and correcting system constitutes the motion compensation

system.

A point target (i.e. an object that appears to the radar to be a

single scatterer) is illustrated in Figure 4. If a line is drawn

though the point target and parallel to the desired flight path, a . b
plot of the intensity of the scene as seen by the radar along that

12
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3
THE SAR AUTOFOCUS AND MOTION COMPENSATION PROBLEM

3.1 INTRODUCTION

As was previously mentioned, one possible practical SAR appli-

cation of the ALC learning algorithm is in the limiting of motion-

induced quadratic phase errors.

Good radar imaging requires fine-resolution capability (i.e.,

ability to separate targets which are physically in proximity with

each other) both in range and azimuth. While very high range reso-

lution can be achieved by using pulses of appropriately wide band-

width, high azimuth resolution can be obtained only by synthetic

aperture radar systems, which make use of sophisticated data process-

ing techniques. These techniques require a coherent radar and pre-

cise and accurate knowledge of the aircraft (radar platform) flight

path, which in turn can be obtained through elaborate motion compen-

sation systems.

The purpose of the motion compensation system is to detect and

provide an accurate measure of the deviations of the aircraft motion

from a straight line path, so the phase of the radar echo can be

referenced to the coherent video source in the transmitter. Errors
v,.o

in the motion measurements degrade the image quality, the degradation

depending on the frequency content of the motion error relative to

the inverse of the aperture time of the SAR system.

Low frequency motion compensation errors, which are quadratic

with time, cause the SAR image to smear in the azimuth direction,

making a point target appear as a line. This image degradation is

called defocusing and in an optical SAR processor it would be cor-

rected by moving a lens until the image came into focus. In a digi-

tal SAR processor it is corrected by a technique referred to as auto-

focus, which makes an estimate of the quadratic phase error and

• .? .. .1
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At the Associative Search Element, the input vector X generates

the output y:

y(k) = *1

depending on whether [7wix. + n(t)] is non-negative or nega-

tive, respectively, where n(t) is additive system noise and the

weighting vector w updates in accordance with the rule:

wi(k + 1) = wi(k) + a'(k)ei(k)

and the function el(k) is the eligibility at tk of path i,

adapting in accordance with the rule:

ei(k + 1) = Bei(k) + (1 - o)[y(k)xi(k)]

and a > 0; 0 < 1 < 1. Figures 2 and 3 show in block diagram form

the implementation of the ALC algorithms at ERIM.

The way the ALC exercises control over the system G is as

follows. Let us assume that we wish to maintain the values of the

state variables sj and sk of the system within certain bounds.

We use the external reinforcement variable r(t) to penalize the

system when either s. or sk take values outside the desired

range. When this happens, we will say that the system has failed

and r(t) is set equal to -1. Otherwise, r(t) = 0.

With zero initial values for the system state variables and the

ALC variables w, v, e, x, the system is activated and goes through a

sequence of admissible states, until it finally fails, either in

s. or sk .  At that time, the system state variables and x are

reset to zero but w, and v are left untouched. Thus, when the next

trial for the system starts, the initial values of w and v are the

final values from the previous trial. Hence, the experience, or

learning of the system at time t is stored in the values wi(t) and

vi(t). After a few trials, the system learns to operate without

failure, i.e., learns to operate while maintaining the state vari-

ables within the desired bounds.

7
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input of the velocity bias integrator. The measurements given to the

ALC include: X, Yc, Yc and F, a measure of the average correc-
tion applied. These measurements enter the decoder and a decision
is made by the ALC which determines the direction the control signal

should be applied. If the ALC applies the proper correction, the
resulting motion measurements will stay within the desired bounds.

Failure criteria are defined in Figure 11. If X or F exceed
their permissible limits, a failure is declared. This means that
either (Y-Y - Y ) continually exceeds the lower or the upper

0 c
bound, or the ALC is driving the velocity bias integrator as hard as
it can in one direction. If Yc or i~exceed their limits, a

c c
failure is not declared, but since the ALC is not in any box, no
learning will occur (i.e., the weights will not change).

The parameters X, YC9 and F were selected as inputs to the
c

ALC for the following reasons:

1. X is a measure of what Y is doing on a long term basis
c

relative to the boundaries and is the primary variable to be
con trol led;

2. Y c and i c are the controls being applied and provide a
memory of past control actions;

3. F was added to provide a measure of how hard the ALC has been
driving the system in the past so it won't overdrive the sys-

tern beyond the desired equilibrium point.

The variable X can be thought of as the output of a 2-bit quantizer
plus sign followed by an integrator. It allows a certain amount of
velocity error to exist before taking corrective action.

-. a

For the runs which were performed and are documented here the

motion data were read every 0.1 second and the gain was set equal to
20.4 r nsec . The decoder was designed as follows:

FiThe variable X was divided up in 10 states between -20 and 20;

25
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Y was divided up into 10 states between -1 and 1;

c was divided up into 5 states between -1 and 1;
C

F was divided up into 2 states between -2 and 2.

Thus the total number of possible states in the decoder was 10 x 10

x 5 x 2 = 1,000. Penalties were assigned to the X states away from

zero as follows:

- A penalty of zero for the two intervals on either side of

zero,

- A penalty of -0.001 for the next two intervals closest to

zero;

- Penalties of -0.002, -0.004 and -0.01 as the intervals moved

farther away from zero.

4.5 EXAMPLE RUN OF ALC

4.5.1 Y-BOUND OF 5 METERS

Figures 12 through 15 illustrate the ALC performance for a par-

ticular set of motion data with a bias of 1 meter/sec purposely added
to simulate performance for a system without beacons and a Y-bound

of 5 meters, which was selected to allow 5 sec for the ALC to learn

(since with a 1 m/s bias it takes 5 seconds to hit the bound). After

23 trials, the ALC has learned to keep (Y-Y -Y ) within bounds
0 C

as shown in Figure 12. Figure 13 shows that the ALC has estimated a

Y bias of 1 meter/second, which is the correct value and Figure 14

shows it has applied a correction of 10 meters after 10 seconds which

is also what should be expected. Figure 15 shows F, the average

correction applied by the ALC, which is 1 for the first few steps

and then decays to zero. The amplitude of the control force used

was 0.1 (the gain in Figure 10). Rather than optimize system per-

formance for a Y-bound of 5 meters, an attempt was made to test ALC
F

operation with a lower value of Y-bound since it was believed a more

accurate bias estimate would be achieved for a lower Y-bound.

27
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4.5.2 Y-BOUND OF 2 METERS

Figures 16 through 19 are plots of some of the variables in the

ALC learning loop for one data file. Figure 16 is a plot of the

corrected Y position as a function of time for a Y-bound of *2

meters, after the ALC has learned to keep Y within bounds. Each step

corresponds to a time interval of 0.1 seconds. Notice that Y never

crosses the Y-bound. Again, in order to simulate performance without

beacons, a bias of 1 meter per second was purposely added to the

original Y measurements. Thus, in order for the ALC to keep the data

within bounds, it had to cancel at least a 1 meter per second bias.

Figure 17 shows that after 27 seconds, the ALC has corrected out 36

meters of displacement or an average correction of 1.33 meters per

second. Figure 18 is a plot of the velocity bias !stimate as a

function of time and it appears to be oscillating about a value of

1.33 meters per second. The velocity bias estimate of 1.33 meters

per second may seem surprising since only 1 meter per second was

added to the data. However, the original data file was noted to have

a bias of 0.33 meters per second, so a value of 1.33 meters per

second should be the expected value. Figure 19 is a plot of F as a

function of time and looks s-imilar to an impulse, which is consistent

with driving the Yc integrator to a constant value.

The application of the learning algorithm to SAR imaging was

finally demonstrated by generating two images, one by processing SAR

data in the normal fashion but without autofocus, and another by

correcting the motion data via the ALC and processing, also without

conventional autofocus. In order to make the task of the ALC more

difficult, a velocity bias of 1 m/sec was also introduced in the

motion data. This made the uncorrected image severely blurred. How-

ever, the image produced when the motion data were ALC corrected was

focused and clear. These images show conclusively that the ALC

adaptive learning controller could be used for on-line reduction or

cancellation of motion-induced quadratic phase errors.

32
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This was clearly shown when we tested system operation with x and e

inputs only to ALC, for a total of 18 states. Figure 26 shows that

the ALC reaches a certain level of control and cannot improve fur-. .

ther, because it does not have the information necessary to do it.

5.5 ALC OPERATION WITH BINARY DECODER

Pole and cart control was next investigated with a binary de-

coder. By binary decoder we mean that the decoder recognizes for

each of the state variables only two states, one state for positive

values, the other for negative. Failure was set as usual on e at
*12 ° and on x at *50 meters.

Figure 27 shows that the ALC quickly reaches a "medium" level of
learning, but cannot improve any further. In other words the ALC

learns to control the system for about 5 minutes (12,000 steps

approximately) but cannot do any better. Obviously, this result

indicates that a binary decoder does not supply the ALC with adequate

information to learn. Because of the nature of the ALC it appears ..-

that the minimum number of required states for each variable is

three, one around the desired point of operation and one on each

side.

When the test was repeated with failure signals in all four

states no improvement resulted. Figure 28 shows that indeed perfor-

mance deteriorated, the system never being able to run for longer

than 30 sec. (1,000 steps). The reason must be that more failure

signals impose more severe restrictions on the operation, without on

the other hand providing the ALC with more information to be able to

cope with the new demands.

Finally, to further confirm and strengthen our understanding of

the binary decoder a test was made on a system with a binary decoder

but with two variables only, e and 6.
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failure 4 must take positive and negative values, on the average with

equal frequency. Theoretically, therefore, 4 can take large values

if it would turn around quickly and take equally large values, but

of opposite sign. Clearly, the choice of a penalty bound for 6,

which is equivalent to a desirable e bound, is difficult to determine.

5.4 ALC OPERATION WITH (Q, 4)CONTROLS

Next the ALC behavior with e and 4 only available for control

was investigated. This means that the decoder fed to the ALC infor-

mation on e and 4 only. The e space was divided into six states and

the 4 into three states for a total of 18 states for the ALC. Fail-

ure bounds were ,120 for e and *30°Isec. for 6, as in the standard L.
operation.

By withholding the variables x and i from the ALC we have essen-

tially changed and significantly simplified the nature of the control

problem. Now the only requirement is that the pole stays within the

prescribed bounds of *12°. Where the cart is located along the

x-axis is not important.

The results shown in Figures 24 and 25 indicate that the ALC

learned very quickly to control the system. After 14.6 seconds of

trials the ALC had the pole balanced for over one hour and operation

was automatically interrupted. From the computer printout, where

the complete state vector is recorded, it is seen that while the pole

was being kept in balance (within *20 approximately) the cart was

slowly drifting along the x-axis, exceeding the 50 meter mark on the

lOl3th step. Also, while the ALC was learning the system failed in

both e and 4.

This test clearly demonstrated that one does not need to feed

into the ALC more information than is necessary to perform the pre-

scribed task. For pole control only e and 6 are needed. For pole

and cart control all four state variables are required by the ALC.
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Hence, if v > 20 m/sec, the probability of failure in x is high.

Similarly, one can reason that if 6 > 15" /sec, a will quickly ex-

ceed the desirable limit of a < 12°

To test ALC performance with (i, ) as controlled variables,

several runs were made with the following decoder boundaries:--

x: -50, -17, 17, 50 meters

9: -5, -2, 2, 5 m/sec

e: -12, -5, 5, 12 degrees P.

4: -15, -10, -5, 0, 5, 10, 15 deg/sec

The total number of states is the same as before: 3 x 3 x 3 x 6 '
162. Failure was set when > 150 /sec. and Ts was 0.025 sec. p

Following the conclusions of last year's study [4], in all the
runs we considered that the ALC learned to control the system if it

kept the controlled variables within the chosen bounds for over one

hour of control time. This means that for Ts = 0.025 sec. the ..

computer was set to cut off when 144,000 steps were exceeded in a

run. All runs were performed in the Z-lO0 microcomputer. The re-

sults showed that the system did not learn as well as when the con-
trol variables were x and o (see Figure 23). The reason for this
poorer behavior may be that the chosen bounds for * were not the

proper ones, and there is evidence supporting this argument. One of

the runs, for example, shows that o exceeded 120 even though stayed

below 10/sec, and by the time went over 150/sec, o had exceeded

20".

This points to the difficulty of actually controlling a certain
variable, in this case the angle o, by imposing a penalty on another

variable, in this case the derivative of o. Since o at t is the
integral of 6 over the interval (o, t), if 9 is to stay below a cer-

tain chosen value, the total area under has to maintain a value
less than the a bound. This means that for the system to avoid

44
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These results substantiate our findings from the runs we per-

formed last year, testing the learning behavior of the pole-on-cart .-

system for various sampling periods. It was shown then that the

learning rate deteriorated significantly as Ts became greater than

0.1 sec. Thus, 0.1 second is the upper bound for the sampling period

for the pole-on-cart system with these parameters.

5.3 USE OF i AND AS CONTROL VARIABLES

The choice of the system variables to be controlled is at the P
present time made on an intuitive basis. In the pole-on-cart prob-

lem, for example, by defining acceptable performance to be that the

variables x and o stay within chosen bounds, almost automatically we

must consider that the system has failed when these variables exceed

these bounds and we require that a failure signal then be generated.

The advantage in this choice is that failure bounds are easily and

clearly defined: if it is desired to keep o below 12° whenever e

exceeds 12°, the system fails. Yet there is no assurance that e is

the best variable to place failure bounds on to achieve optimum

performance. It may be possible that using as a control variable,

better performance may be achieved, since a high 6 value at

acceptable o values may imply that the system will fail no matter

what action is taken. The difficulty, however, is that it is not at

all evident what failure bounds must be set for ""

Let us try to establish some reasonable bounds for and test

for system performance. We will assume that o is small.

Using the dynamic characteristics of the system obtained pre-

viously, control values for 6 and k were derived as follows:

First, we will assume that Ts < 0.1 sec. Since the probability

of a large number of steps in the same direction is very small, for

the cart velocity to reach a value like 20 m/sec, the system must go .

through a long series of short bursts of steps in the same direction.

43

I

*. . . . . . . .b 4' . '. ********** - ... .



2ERIM RADAR DIVISION

torque while at the same time pulling the center of gravity of the

pole down so that pivot point P stays on the moving mass.

For small e (i.e., e <6, sin e < 0.1), the effect of the weight

is small compared to F and can be ignored. Figure 22 shows the pole

making an angle ae with the vertical. The effect of F will be to

cause it to rotate about its center of gravity, the angle ae equaling

&x 2
tan ae AG = -- = Tax radian

From Eq. (4) for t < 5 seconds, the displacement x of P is given by

x(t) = 5t2 meters; 0 < t < 5 sec

dx = 10t dt

If the sampling period TS = 0.1 sec, {= 20 meters, e w x/10 radian

x(0.1) = 5(0.1)2 0.05 m e = 0.005 rad

x(0.2) = 0.2 m e = 0.02 rad < 1.2.

x(0.3) = 0.45 m e a 0.045 rad < 30

x(0.5) = 1.25 m e L 0.125 rad m 70

We can see, therefore, that if the sampling period, Ts, is greater

than 0.1 sec, the learning rate will be slow because three to four

successive moves in the same direction will cause the system to fail.

Taking Ts = 0.05 sec, in 5 T

x(5T s) = 0.3125 m and e a 0.03125 rad < 20

Thus, Ts = 0.05 sec will gve a much better system performance, by

allowing sufficient time for the system to learn and take appropriate

action to avoid failure. Further, we note that since Ts must be

less than 0.1 sec, the system will take at least fifty steps in 5

seconds. Because the probability of y = +1 (or y = -1) in more than

50 consecutive steps is very small, it follows that for approximate

estimates of cart performance, Eq. (4) is adequate.
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The dynamic behavior of the cart can be obtained by looking at

the free-body diagram of the cart, which is shown in Figure 20. The

equation describing the motion of the system is:

dv(I
F - fv = M (1)

where f is the coefficient of friction, from which we get, solving

for v:

v(t) = - e t >0 (2)

Introducing the chosen values of the system parameters: F = 10 new-

tons, M = 1 kg, f 0.01 newton-sec/m, we have:

v(t) = 10(I -e -0 ' Ol t mis (3)

So we see that the fundamental cart time-constant is approximately

100 seconds. This is a very large value and, hence, the critical

system time-constant with regard to sampling rate will come from the

dynamic behavior of the pole. Also, note that for t < 5 sec, or when

friction is ignored, the cart velocity is given by

v(t) a lOt m/s 0 < t < 5 sec (4)

Looking now at the pole alone, we see that its behavior can be anal-

yzed by considering it as pivoted to a very large mass, which is mov-

ing with a velocity v(t), given in Eq. (3), independently of the
motion of the pole.

Figure 21 shows a pole of length I making an angle o with the

vertical while the pivot point P is moving with velocity v. There

are two forces acting on the pole: its weight w acting through its

center of gravity and a constant force F on P. When the pole makes

an angle a, the weight generates a torque T - (w sin a) Z12, which

tends to rotate the pole about the pivot point P so as to increase a

and cause the system to fail. The force F also produces a rotating

40
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If one ALC can control any number of system variables (ignoring

running time problems), then it seems that a second ALC would be

needed only when it is desired to control two independent but "

possibly interacting systems.

Two ALC's could also be used if more than one input to a system

can be applied. In the pole-on-cart problem, for example, if the

cart is free to move on a plane instead of the x-axis only, one ALC

can control the force Fx  that results in motion in the x-axis

direction, and another ALC can control the force F that controls
y

the cart motion in the y-axis direction.

5.2 THE DYNAMIC PERFORMANCE OF THE CART-POLE SYSTEM

The learning rate of the ALC is seriously affected by the system

sampling rate used for two reasons: (a) the sampling rate must

satisfy the Nyquist criterion in order to make sure we are indeed

making use of all the information in the output of the system to be

controlled, and (b) at every sampling instant a decision is made on

whether the input should be plus 1 or minus 1, and the ALC weighting

vectors w(t) and v(t) are updated, hence the system performance in

the next operation interval is modified. Also, the way the state-

space is partitioned and discretized affects, and is affected by,the

choice of the sampling period.

In order to better understand the significance and get quantita-

tive measures of the choice of the sampling period to the learning

rate of the ALC, it is necessary that we get a feel for the dynamic

performance characteristics of the system.

An approximate but sufficio-fly accurate and quick estimate can

be derived as follows. First, we recognize that since the mass M of

the cart (1 kg) is much greater than that of the pole (0.1 kg), which

is pivoted on top of it, the motion of the pole has a minor effect

on the motion of the cart. Hence, we can analyze approximately the

system by looking at each body separately.
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There is another set of questions that must be definitively

answered before the parametric study is made. Some of these are:

1. How many state variables can one ALC work on and control?

Is there a limit?

2. Should the complete state vector be the input to the ALC?

3. How many variables could/should be used to produce failure

signals? Is there an optimum number? An optimum set? How

does one determine this set?

4. When do we need a second ALC? How do we operate them in

series/parallel?

We do not have definitive answers to these questions at the

present time. Logically, it would seem desirable or even necessary

" to input to the ALC the complete system state vector. This way com-

plete information on the state of the system will be available to

the ALC at all times. One cannot say, however, that if some of the

state variables which are not used for system control are omitted, "

the ALC cannot learn to control the system. What the effect of a

reduced state vector input will be on the learning ability of the

ALC to perform an assigned task will have to be investigated. It

will certainly reduce the running time of the algorithm, which is

always desirable.

A failure signal may be produced, if so desired, by any or all

of the state variables. Intuitively, it seems that it would be best

to get failure signals only from those variables we wish to directly

control, i.e., keep within bounds, if for no other reason because

appropriate failure bounds for these variables are easy to recognize.

It does not necessarily follow that if these variables are chosen

for control best ALC learning behavior will result. For example, in

the pole-on-cart problem, the goal is to keep the variables x and e

within chosen bounds. But the pair (x, e) may not be the best vari-

ables to control to achieve this goal.
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5
ALC DESIGN STUDY

5.1 INTRODUCTION

Let us assume that we are given an engineering problem in which

it has been determined that the ALC can be profitably applied.

To design the appropriate ALC that will match the problem or

system requirements, the following decisions must be made regarding

the ALC parameters:

1. Determine which variables should be used for control and set

the appropriate failure bounds;

2. Decoder design, i.e., decide on the system state space

partition (number of states and state bounds);

3. Choose the sampling period, Ts;

4. Set values for the ALC parameters (constants) ya, , and

noise standard deviation, a;

5. Choose the magnitude of the force, *F, the output of ALC; and

6. Finally, we must decide whether one ALC will suffice, or

whether two ALC's may be needed.

This is not necessarily the order in which these decisions have to

be made, neither are they independent of each other. There is, for

example, an upper limit on Ts, which is determined by the dynamics

of the system, but how often we should sample also depends on the

decoder design.

In order to be able to answer these questions, the behavior of

the ALC must be understood well enough to permit optimal design.

Since ALC's do not admit to analytical study, laborious parametric

study is the only available course of action.

3
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When this simpler system was run with an 18 state decoder the

ALC learned very quickly to control it and performed very well (see

Section 5.4). With a binary decoder (a total of four states here)

the ALC was never able to run the system for a one hour period.

Figures 29 and 30 show that the ALC learned quickly to run for about

one-half hour (about 65,000 steps) and then failed. Again this indi-

cates that two states for a control variable do not provide suffi-

cient information (room for comparison of performance) for the ALC

to learn to carry out the desired task.

5.6 EFFECT OF NOISE ON ALC LEARNING BEHAVIOR

It has been suggested, without proof, that the injection of noise

at the ASE at the point where the output y is generated enhances the

learning rate of the ALC. Specifically, it is felt that it forces

the system state vector to move quickly through the various system

states, thus generating wi and vi weights in each state faster

than if there were no noise present.

To resolve this question and determine conclusively the effect
of noise level on the learning characteristics of the ALC, an exhaus-

tive study was carried out. The system used for this study was again

the pole-on-cart and we declared that the ALC learned to control it

if it maintained the controlled variables within the chosen bounds --

for over one hour. When step sizes of various lengths are used this

is a better learning criterion. S

To test the performance of the ALC on the pole-on-cart system,
noise standard deviations and step sizes were varied while the other

system parameters were held constant. The combinations tested were

noise sigmas of 0, 0.001, 0.01, 0.1, 1., 10. and 100., against step

sizes of 0.01, 0.025, 0.05, 0.1, 0.15, 0.2 and 0.25 seconds. Noise

sigma multiplies a Gaussian random number generator to produce the

noise input in the ALC. Again, step size is the sampling period,

53 '
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the time interval between successive decisions on whether the applied

force should be +F or -F.

The a, B, y, and 6 values used were those previously determined

to be optimal for a step size of 0.025 seconds and a noise a of 0.01,

i.e., = 1000., B = 0.9, y = 0.95, 6 = 0.1 [4]. The integration

interval was always set equal to the step size. Two different noise

seeds (0 and 12345) were used in order to confirm to our satisfaction

the validity of obtained results. All test runs were performed on

the Z-100 microcomputer using the POLE2 program.

Table 1 shows the number of trials that were completed for each

of these combinations and indicates whether or not learning has

occurred. Unfinished test runs are the result of excessively long

execution times i.e., a large number of steps per trial, but not long

enough to satisfy the learning criterion. The average rate of exe-

cution of the POLE2 program is approximtely 15,000 steps per hour.

The results which are summarized in Figures 31 to 33 essentially

substantiated our predictions. A low noise level does indeed help

the ALC to learn for all step sizes. Without noise input the ALC

operation is completely deterministic. It starts always with a plus

one output and after it learns to control the system for a consider-

able length of time, eventually it gets into a pattern of successive

states leading to failure and cannot get out of it. A high noise

level, on the other hand (i.e., a > 10) does not allow the system to r
settle into a stable cycle of states and stay there. With high

probability a noise spike will throw the system out of the cycle,

thus causing the system to wander.

The average values of the runs made with the two different noise

seeds are shown in Figure 31. It is seen that for Ts = 0.025 sec

and Ts a 0.05 sec. the results are almost identical. As Ts in-

creases the time for the ALC to learn increases in general for all o

values but it takes a marked increase for a greater than one for all

Ts .  Individual learning curves for the various runs are included

56
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in Appendix C. We also note that when the step size increased to

more than 0.15 sec, the ALC did not learn, as was expected.

There does not seem to be a definite a value giving optimum per-

formance. The range of values 10-2 < < I give approximately

equally satisfactory results. If a "best a" value irrespective of

step size had to be selected, however, 0 = .01 would be the choice

for the system parameter values used in these runs.

The effect of the level of noise in the ALC learning behavior

depends on the value of the parameter a. A larger value of Q will

offset a larger noise level and allow the ALC to learn. Figures 34

and 35 show that for = 100 the ALC can learn to control the pole-

on-cart system if is set equal to 106.
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6
CONCLUSIONS

The successful application of the adaptive learning controller

to the motion compensation problem of Synthetic Aperture Radar imag-

ing has shown that the ALC can indeed operate in an engineering en-

vironment to solve practical problems. While time and funds did not

allow us to make a quantitative comparison between the performance

of the ALC and conventional techniques used at ERIM in SAR image

processing, the usefulness of these learning algorithms has been con-

clusively demonstrated.

The performance of the adaptive learning controller with various

levels of noise inputs was also investigated. It was found that a

low level noise input improves learning behavior, while a high noise

level does limit learning ability.

A limited decoder design study seemed to indicate that the learn-

ing characteristics of ALC with binary decoders are not as good as .

those with a larger number of states. It was also shown that faster

response results when only those variables which contain information

on the controlled variables are used in the decoder. This results ".

not only in better learning rate but also in decreased computer time.

Further studies in ALC operation are expected to lead to improved

system performance, ALC design optimization capability and extensive

engineering application.
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The advantage of the ALC over other possible correction methods

becomes more apparent when the problem is nonlinear and/or time

variant or the fundamental process involved cannot be modeled for

some reason. These situations are very difficult to handle with a

Kalman filter or passband type filter, while the ALC can still be

applied to these problem. This characteristic of the ALC is very

desirable from a SAR application standpoint. Suppose that instead

of Y the power spectral density function of Y was used as an input

to the ALC. The ALC would know at any instant of time how much

energy is present in the portion of the motion spectrum due to

motions linear, quadratic or cubic with time, those motions due to

rigid body motion, structural bending motions or vibration motions

and the ALC could take the correct action depending on what motion

is driving the system. The ALC could also be used to cancel the

acceleration bias due to gravity bias errors in a strapdown platform

which involves a coordinate transformation process. This strapdown

acceleration bias problem is nonlinear and a difficult one to handle

with a linear passband filter or Kalman filter. These more difficult

problems are more important for tactical systems or systems that use

low performance motion sensing equipment.

B2
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APPENDIX B
ALC AS HIGH PASS FILTER OR KALMAN FILTER

A correction similar to the one being made by the ALC could be

made using a Kalman filter or a high pass filter.

A Kalman filter could be designed to estimate the velocity bias

in Y, or Y could be differentiated to give Y velocity, passed through

a high pass filter to remove the average velocity and then integrated

to give a new estimate of Y without any velocity bias. The high pass

filter is an undesirable approach since it is difficult to obtain

the sharp cutoff required for this application, the filter adds un-

desirable time lags over the low frequency region where errors have

the greatest effect on system performance and differentiation ampli-

fies high frequency noise. A Kalman filter could be used but it in-

volves a major design effort, is computationally complex and can have

stability problems. Also, if the task description were changed in

order to improve overall performance and became very nonlinear which *

creates no fundamental problem to the ALC, it might become impossible ,. .

to use a high pass filter or Kalman filter.

Consider a second order least squares algorithm, which under the

right simplifying assumptions is a Kalman filter. Assume that Y is

a sine wave with amplitude just below the Y bound so that it never

crosses the bound. The ALC will make no correction and will give a

velocity bias estimate of zero. The least squares algorithm will S

give a velocity bias estimate that will oscillate about zero and have

some peak value. The ALC gives the correct value while the least

squares approach gives a correct value only occasionally. This

illustrates one basic difference between the ALC and the least

squares approach which is important to the SAR motion compensation

problem. Determining other ways in which the two approaches differ

requires a more comprehensive tradeoff analysis.
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By first ignoring the constant phase error terms, and lumping the

identical quadratic and linear terms into the two signal histories,

and after Fourier transforming, two low-resolution images are pro-

duced. These images look almost the same, but they are displaced in

both dimensions relative to each other. Letting S denote the "com-

mon" undetected image, the image derived from the left subaperture

is approximately IS(f + 2axL, f + cx and that derived from theis~ ~~ aproiat9 iSf L)..

the left is IS(f- 2axR, fy - cxR)12  By measuring the amounts of

x and y misregistration, estimates a and c may be obtained. If a

common x-center had instead been chosen for the two sub-phase his-

tories, then estimates of b and c would become available. If the

two patches had neither common x nor y centers, shifts in f and
x

f would both depend upon two of the three coefficients, and the
y

contributions from each could not be easily determined. The reli-

ability of the estimates can be improved by averaging estimates

obtained from several sub-phase history pairs.

A.9

A-.-

-- '- ~ ~ .*~~* % C~ . .. * C '~* - .. . . . . . . . . . . . . . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . .-- "...-,



Subaperture

_x
R

Full aperture

FIGURE 37. LOCATION OF TWO SUB-PHASE HISTORIES TO BE UTILIZED
IN ESTIMATING MISFOCUS COEFFICIENTS A AND C.
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where the shifts result from quadratic phase error-induced linear

phase terms of varying sign and magnitude. To detect phase errors

of the form O(x, y) = ax2 + by2 + cxy, we will see below that an
estimate of the two-dimensional misregistration between two images

is required. .

The two-dimensional quadratic focusing problem can be stated as

one of obtaining reliable estimates of the misfocus coefficients, a, -

b, and c, where the phase error is assumed to be of the form

O(x, y) = ax2 + by2 + cxy, for x, y P [-l, +1]. Some type of

map-drift procedure should be used to find a, b, and c.

In the spirit of the l-D technique, a 2-D approach suggested by

Figure 37 is taken. Two equal-size sub-phase histories centered at

(-xL, Yo) and (XR, Yo) are culled from the unfocused 2-D

phase history. Each of these small patches is translated in x and y

to become centered about the origin and Fourier transformed and

detected. The translational shifts between the resulting low-

resolution images are then used to estimate some of the misfocus

coefficients.

Examining the phase errors across the shifted sub-phase histories

note that

L(x' y) d phase error across shifted left sub-aperture history

= O(x- xL, y + yo)

= ax2 + by2 + cxy + constants - 2axLx + 2byoY - cxLx + cyx

Similarly,

OR(X, y) d phase error across shifted right sub-phase history

=(x + xR, y + yo)

- ax2 + by2 + cxy + constants + 2axRx + 2byoY + cxRY + cyox.
R• 7 -7
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.-.{s(x 7

+1/2( 1) - e -j 2tfx dx

Se ( x e'e' "
-1/2 -I12

eJ2wax 2 e-J 2w(f+a)x dx, CL' 1= L  sox - d , cL  1 -..-

and
=.11:s.:x 2

V3{s~x)I 2 3{sx 1 j2irax2

2o} f+aj
Similarly, the right-hand phase history subaperture receives the

following operations:

I "3{sR(x))I ~ 1 eJ fax a12

The following approximation can now be made:

},1} ej2 2 2 2 1 1

1{ (x V e }f I ' 1 so (X + T~) ej }f xeE- -7 ]

which is heuristically justified by observing that the images pro-
duced from two short pieces of a phase history look very much the

same, and that the misfocus term will smear all reflectors about the
same. Thus, the two images l'3{sL(X)} 2  and I {sR(X)l 2  are
nearly shifted versions of one another, and the amount of relative
shift is dependent only on the misfocus coefficient, a. Various
cross-correlation techniques might then be used to estimate this
misregistration.

Two-Dimensional Mapdrift Focusing Algorithm

The mapdrift focusing approach described above can be stated more

generally as a technique which detects phase errors by exploiting
relative shifts among images produced from multiple subapertures,

A6
...- .... ",
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FIGURE 36. MAPDRIFT PRINCIPLE.
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This is a satisfactory model of the azimuth phase history when the
primary phase error is due to unknown cross beam velocity errors.

The task is to estimate a in order to remove the phase error later
by multiplying the phase history by the conjugate of the phase error.

The tasks required to generate an estimate are:

1. Split the interval [-l, +1] into two intervals [-l, 0] and

[0, +1], and shift the signals on these intervals so as to

become centered about the origin.

2. Fourier-transform and detect (i.e., image) each of the short

phase histories.

3. Derive an estimate of the quadratic misfocus by measuring

the relative shift between the resulting two low-resolution

images.

The objective of the splitting and shifting is to induce phase errors

across two subapertures with linear terms differing in sign (and

possibly magnitude). For the situation outlined above and diagrammed

in Figure 36, the linear phase error terms are seen to be -ax and

+ax for the left and right subapertures, respectively. Since the

effect of multiplying a phase history by a linear term is to shift

the corresponding image left or right according to the sign of the

term and by an amount proportional to the term's magnitude, the low-

resolution images produced from the sub-phase histories are shifted

in opposite direction by an amount proportional to 2a.

The desired sequence of operations is described algebraically by

first forming the left image from the shifted phase history:

sL(X)

0 otherwise

A4
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The magnitude of the quadratic phase error due to a cross beam

velocity measurement of 1 percent would be 13.3 cycles, assuming a . -

range of 15 statute miles, a 0.1 ft wavelength and a 3 ft resolution.

This is figured mid-aperture to first null for a uniformly weighted -- ,

aperture. A 1 percent velocity error is consistent with the speci-

fied accuracy for the velocity measurement generated by the LTN-51 -"-

INS of *(3 fps + 0.5 fps/hr).

A.2 AUTOFOCUS DESCRIPTION

The purpose of the autofocus algorithm in SAR image processing

is to estimate the coefficients of the two-dimensional quadratic

phase error present in phase histories. The quadratic phase error

can be expressed as

0(x, y) = ax2 + by2 + cxy

where x, y are phase history coordinates, and a, b, c are constants

to be determined. Two methods that are frequently used to estimate

these coefficients will be now described briefly.

l-D Mapdrift Method .. ,. -

Suppose the time-limited phase history can be expressed as a

product of factors as shown:

S(x) = S0 (x) ej2wax
2

where

So(x) is an unperturbed signal

and

eJ2,fax2 '"
e is a quadratic phase error

A3
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Assume that the antenna has a physical aperture L

"-' ~ L 2P 
..

where L.

p = azimuth resolution

If the antenna aperture is uniformly weighted, the null to null an-

tenna beamwidth -4" is

-~-=2xlL

. The time interval At over which a target is illuminated is

2at =rrlv sin o--

" xr
pv sin "

The total phase shift across half an aperture centered on broadside

2

=7 cycles
4 P

. If there exists a cross beam velocity measurement error, v and

* an along beam acceleration measurement error, the phase error

across half an aperture is

Oe 2 2 ( + -o  cycles
4p v

A2
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APPENDIX A P
CONVENTIONAL AUTOFOCUS

A.l SOURCES OF QUADRATIC PHASE ERROR

The quadratic phase errors present in azimuth phase histories -

are the indirect result of dc errors in the measurement of along beam

acceleration. Along beam acceleration is a function both of radar

vehicle acceleration and cross beam velocity. In the absence of

vehicle accelerations the range r to scene center is

r 2 + (vt)2

where

Ro = range at broadside

v = vehicle velocity

t = 0 at broadside

V A
r

= v2  tr r-77.

r

2= sin 2 e -".-
r1

where

e = squint angle relative to vehicle track
1- ..- 2-

Phase 0 = r .
2

- cycles

where

= radar wavelength

Al
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